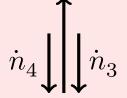
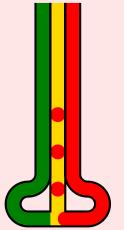

Néel Institute space cryogenics (G. Vermeulen, J. Vessaire)

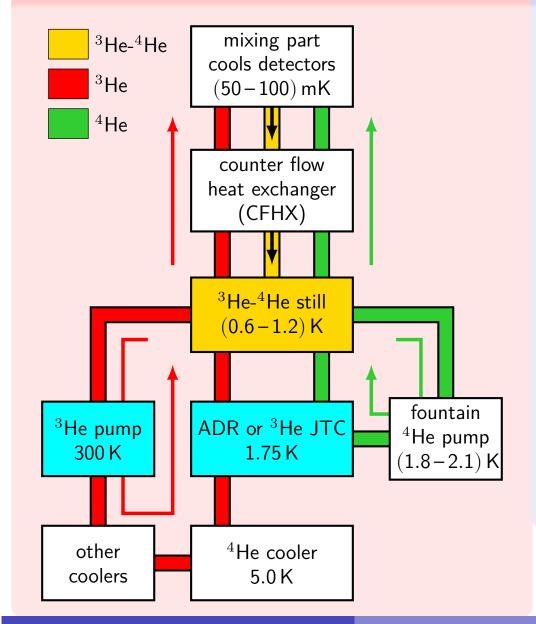
with gravity


earth: most common dilution refrigerator any gravity


- gravity localizes phase separation interfaces of
 - liquid and vapor phases in still
 - concentrated (lighter) and dilute (heavier) phases in mixing chamber

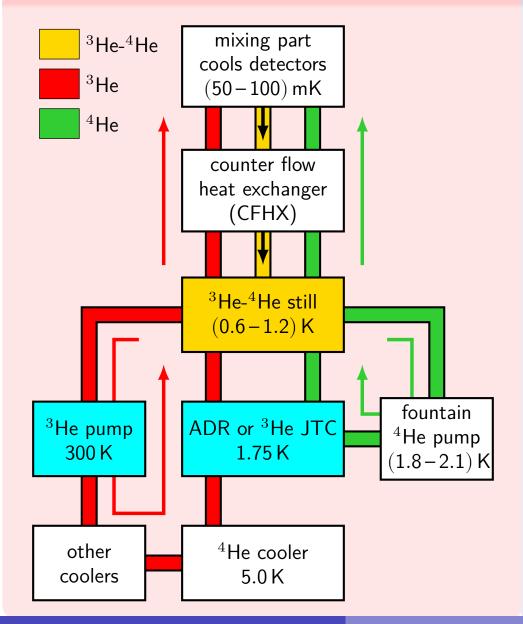
any gravity: space or goniometer

- capillary forces play the role of gravity
 - radius of the tubes smaller than the capillary radius of ³He droplets
 - 2-phase flow in laminar part of mixture return tube
 - 1-phase flow in turbulent part of mixture return tube


- 3 He
- 3 He- 4 He
- $^4\mathsf{He}$
 - $\dot{n}_3 + \dot{n}_4$

Néel Institute space activities

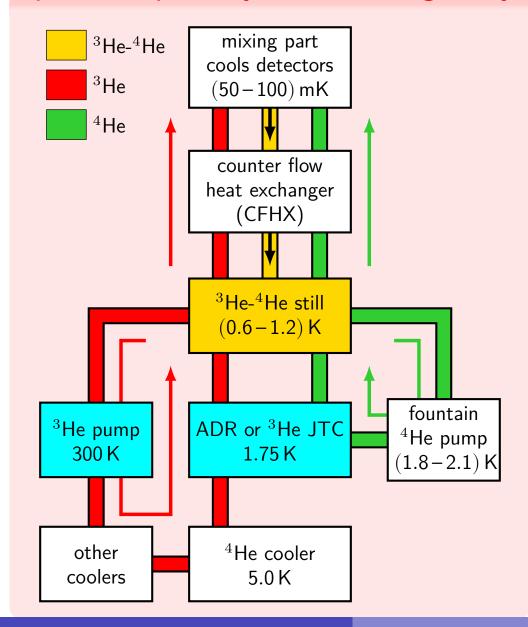
space: capillarity instead of gravity CCDR in cooling chain

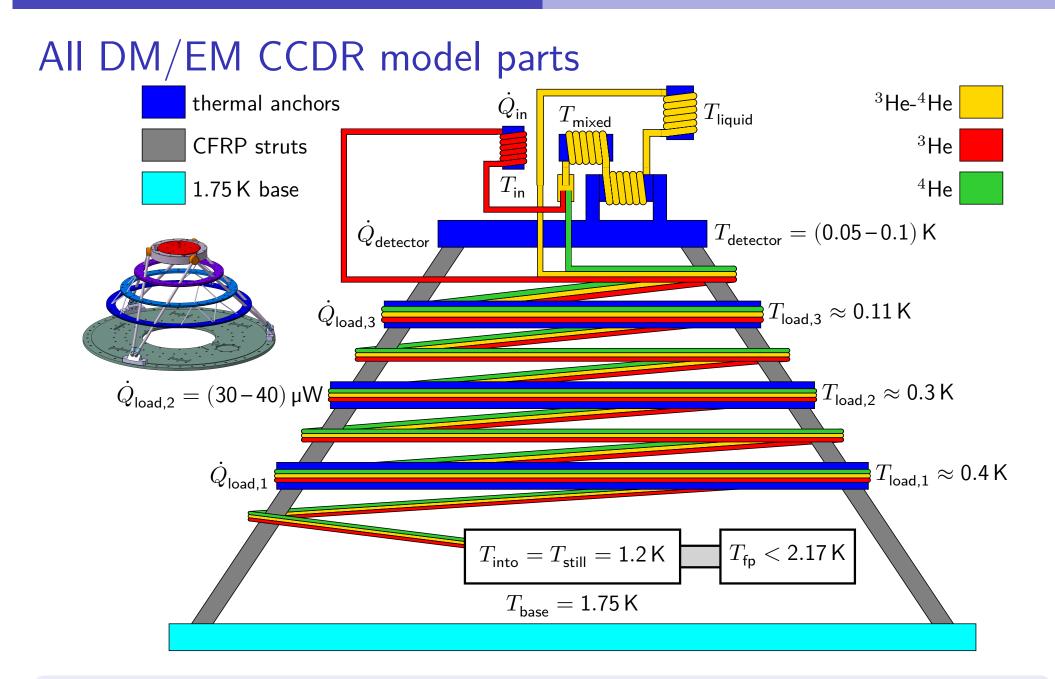

- a dilution refrigerator pro
- dilution refrigerator proper is mixing part + counterflow heat exchanger
- + isotope separator is ³He-⁴He still + fountain pump to get a flow of pure liquid ⁴He and and a flow of almost pure ³He vapor
- \bullet external 1.75 K cooler to absorb the heat load of the circulating $^3{\rm He}$ and $^4{\rm He}$
- external ³He circulation pump
- rest of cooling chain

Néel Institute space cryogenics activities

- construction and test of demonstration model dilution refrigerator (X-IFU specs):
 - thermal test of CCDR support structure having dimensions compatible with future vibration test support structure
 - experimental check of the thermal CCDR model used to design the support structure
- knowledge transfer to and collaboration with D-SBT (CEA)
 - work on design to make and test a simplified zero gravity isotope separator device in a cryostat at the CEA
 - participation of D-SBT in the test of the X-IFU CCDR demonstration model
 - sharing CCDR physics and computer program implementing the thermal model
- D-SBT/CNES contract: design proposal for engineering model of isotope separator for CCDR

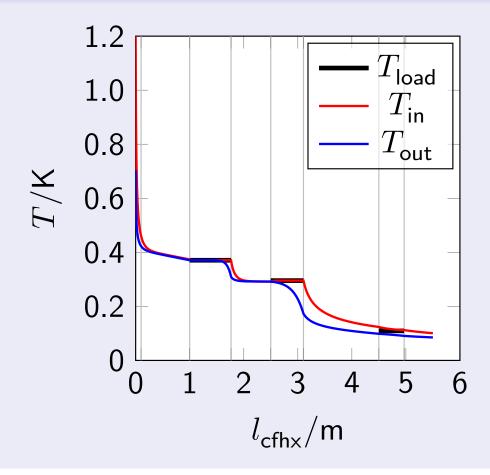
Zero gravity CCDR in simplified cooling chain


space: capillarity instead of gravity thermal-mechanical design issues


- CFHX and mixing part tuning
 - $\dot{Q}_{
 m lift} \propto {}^4{
 m He}$ and ${}^3{
 m He}$ circulation rates \dot{n}_4 and \dot{n}_3
- direct CCDR interfaces:
 - ³He circulation pump
 - ³He Joule-Thompson (JTC)
- ullet 4 He circulation \dot{Q}_{load} on
 - ADR or ³He JTC
 - \bullet lower $T_{\rm still}$ implies lower $Q_{\rm load}$
- ullet 3 He circulation \dot{Q}_{load} on
 - other coolers
 - ⁴He cooler
 - ADR or ³He JTC
- CCDR support struts and links to focal plane (launch)

Zero gravity CCDR in simplified cooling chain

space: capillarity instead of gravity thermal model


- input:
 - focal plane temperature and heat load to mixing part
 - instrument heat load to counterflow heat exchanger
- CCDR output:
 - ³He circulation rate
 - ⁴He circulation rate
- implies cooling chain output:
 - cooling power 1.75 K stage
 - ³He circulation pump specs

thermal model for all CFRP struts and all CCDR parts below $T_{\rm still}$

CCDR temperatures for $Q_{\text{detector}} = 4 \,\mu\text{W}$ (LiteBIRD)

CFHX sections

Mixing part inlets and outlets

- ullet $l_{\rm cfhx} < 1\,{\rm m}$: viscous dissipation
- ullet enough CFHX surface at T_{load}

- ullet mixing at $l_{
 m mixing-part}=1\,{
 m m}$
- \bullet $T_{
 m detector} pprox 0.085 \,
 m K$

Relative merits of ADR and CCDR

ADR versus CCDR

- ADR wins on TRL and on competition
- ADR wins on efficiency
 - ADR cycle approaches ideal Carnot cyle
 - CCDR is less efficient because of ³He Fermi-Dirac statistics
- CCDR can win on mass < 4 K
 - propagates back into system (lighter is easier for vibrations and also for thermal isolation)
- CCDR cooling is intrinsically continuous
 - multi-stage ADR approximates continuous cooling by clever cycling of magnetic fields
- CCDR does not require changing magnetic fields
 - CMB community likes CCDR for detector stability