Millimeter wave detection using On-Chip LEKID based spectrometer

Usasi Chowdhury

Supervisors: Alessandro Monfardini, Florence Levy-Bertrand, Martino Calvo

LAM, Marseille, 20th June, 2022

Outline:

- Scientific Motivation
- Goal of the thesis
- Concept of on chip spectrometer, *OMKID*
- Results

Motivation:

Goal: <u>On-Chip Spectrometer based on Kinetic Inductance Detectors (KIDs)</u>

OMKID, 2021 75-110 GHz

- ✓ Minimized design
- Monocrystalline dielectric material Sapphire(100 μm, 150 μm)
- ✓ Ground with Slot
- ✓ Simplified lithography process

- Concept of on-chip spectrometer:
 - ✓ Spectrum Analyzer

OMKID: the onchip spectrometer

Side infront of the source

Star-slot antenna with microstrip feed (mm wave line)

Back side of sample holder

Star-shaped slot in continuous ground plane

Resonant bandpass filter: Selecting subband (80-120 GHz)

Using different components for different element:

Probe tones: 1-2 GHz Q factor: 10⁵ mm wave Transmission line, Band pass filter: <u>Al 20 nm: T_c=1.4 K, Cut off frequency ~ 108 GHz</u>

Resonator, Readout line: <u>TiAl Bilayer (10+15</u> <u>nm), T_c~1 K</u> <u>Cut off frequency~</u> <u>80 GHz</u>

Proximity effect: TiAl bilayer

Superconducting Cut off frequency, $\nu_g = (74 \times T_c) GHz$ Measurements of OMKID spectrometer:

Front View Side view

VNA response of the LEKIDs:

Results:

Illumination through horn and slot antenna

Conclusion:

- \checkmark The device is working with promising results.
- ✓ Strong polarization dependency is observed with the currenct device configuration.
- \checkmark More optimization is needed for each component.
- ✓ Upcoming with higher channels(64+64 channels)

Thank you very much for your attention.