DE LA RECHERCHE À L'INDUSTRIE

ALFA and ASTEROID detectors characterization results and status of Quantix and Intrapix test benches

T. Pichon

AG FOCUS – LAM 20-21 Juin 2022

www.cea.fr

1. ALFA

- 1. Presentation of ALFA program
- 2. Summary of characterization results

2. ASTEROID program

- 1. Presentation of ASTEROID program
- 2. Summary of characterization results

3. Quantix test bench

- 1. Test bench presentation
- 2. Principle of measurement
- 3. Validation
- 4. ALFA and ASTEROID quantum efficiency measurement
- 4. Status of Intrapix

5. Conclusions and perspectives

1. ALFA (ASTRONOMICAL LARGE FORMAT ARRAY) 1. PRESENTATION OF ALFA PROGRAM

Goal: equip Europe with high performance IR detectors for space applications and astrophysics

• Development :

- Lynred (ROIC + Hybridization) + CEA-Leti (PV)

- <u>Characterisation :</u>
 - Astrophysics Department, CEA
- Funding :
 - ESA, FOCUS

ALFA Specifications:

- HgCdTe
- 2048x2048 with a pixel pitch of $15\mu m$.
- Spectral domain 0.8µm to 2.1µm.
- Dark <0.1 e-/s/pix at 100 K

1. ALFA (ASTRONOMICAL LARGE FORMAT ARRAY) 2. SUMMARY OF CHARACTERIZATION RESULTS

ALFA detectors characterized at CEA with NGC control electronics in light tight test bench.

ref. LETI	General performance	Location	
329505 (Batch 3)	Very good	CEA Dap	
259 (Batch 1)	Good	CEA Dap	
260 (Batch 2)	Bad	ESA	
331064 (Batch 2)	Non usable	ESA	

Very good cosmetics Very good operability under illumination Extremely good linearity Extremely low dark current Low cross talk Keference pixels not useable Excess noise

2. ASTEROID PROGRAM 1. PRESENTATION OF ASTEROID PROGRAM

ASTEROID: ASTronomy EuROpean Infrared Detection

 <u>Goal:</u> Developpment of large wafer foundry that can be used to manufacture high performance IR detectors for scientififc and astronomical applications. Start: May 2017. End: Nov. 2021

Funding :

- European Commission
- <u>Development</u>:
 - Lynred (PV, 1st SWIR PV layer dedicated to very low flux applications) and CEA-Leti (ROIC)
- Characterisation :
 - Astrophysics Department, CEA

ASTEROID Specifications:

- ALFA like technology, HgCdTe-based IR detectors
- 640x512 with a pixel pitch of 15µm.
- Spectral domain 0.8µm to 2.1µm.
- Dark <0.1 e-/s/pix at 100 K

9 detectors manufactured
 → 7 delivered at CEA-Dap
 → 6 characterized

ref. LETI	Туре	Characterized at DAP		
21-01	étude2	Delivered but non operable		
21-03	étude2			
21-05	étude2	Not delivered to DAp		
21-08	étude2			
21-02	étude1			
21-04	étude1			
21-06	étude1			
21-07	étude1	Not delievred to DAp		
21-09	Monovariante			

ASTEROID detectors characterized at CEA with in-house control electronics in light tight test bench.

ref. LETI	General performance		
21-03	Very good		
21-08	Very good		
21-09	Very good		
21-02	Polluted by glow		
21-04	Polluted by glow		
21-06	Bad		

3. QUANTIX TEST BENCH 1. TEST BENCH PRESENTATION

- Three components:
 - monochromator,
 - fore-optics
 - cryostat
- Collimated beam to illuminate calibrated photodiode and detector simultaneously

Quantix and the calibrated photodiode (CEA-Leti) have been funded by FOCUS. We only have one SWIR calibrated photodiode (no backup)

3. QUANTIX TEST BENCH 2. PRINCIPLE OF MEASUREMENT

QE principle of measurement with a calibrated photodiode :

3. QUANTIX TEST BENCH 3. VALIDATION

 Views of the cryostat with ESA (manufactured at CEA/Leti) reference device installed

3. QUANTIX TEST BENCH 3. VALIDATION

- QE measured from 0.8 to 2.3 µm: OK!
- Uncertainty is $\pm 12\%$
- Largest contributor to uncertainty is photodiode current: \pm 8%

3. QUANTIX TEST BENCH 4. ALFA AND ASTEROID QUANTUM EFFICIENCY MEASUREMENT

<u>ALFA</u>

ASTEROID – Detector 2108

4. STATUS OF INTRAPIX

Intrapix: Test bench dedicated to the measure of the intra-pixel response based on the Talbot effect (self imaging effect).

- FOCUS has highly contributed to the funding (hardware, post-doc, CDD)
- In collaboration with ONERA
- « first light » with an ASTEROID device (without CSIG)
- Same spatial structures in illumination map as in Quantix (Diamond machined mirrors)
- C. Ketchazo will joint CEA (expected July) to work on Intrapix data processing.

 Intropix illumination pattern, CH 2109, 1550 nm

 7.50x10⁻¹

 6.50x10⁻¹

 6.00x10⁻¹

 5.50x10⁻¹

First image with a CSIG expected this week !

ALFA and Asteroid detectors show very good detection detection layers !

Detector	EUCLID H2RG detector, 2.3 µm cutoff	CEA/LETI CH1403 (ESA ref for Quantix)	ALFA: CEA/LETI CH329505 (Detector CAGIRE)	ASTEROID: Lynred CH2109	ASTEROID: Lynred CH2108 Detector with different diode geometries	ASTEROID: Lynred CH2103 Detector with different diode geometries
IPC (%)	2.1-2.6	2.4	2.3	2.5	2.3	To be measured
QE	~80 %	~80 %	To be measured	To be measured	max 80 %	To be measured
Dark current at 100 K in e-/s/pix	0.0052 (Phd Serra B.)	~1 (polluted by glow, to be remeasured)	0.003	0.004	0.003-0.006	0.002-0.005

Soon no more detector available at CEA-DAp. Yet:

- More measurements are needed to investigate the origin of the excess noise in these detectors
- Extra electro-optical performance measurements can also be performed to have more statistics.

\rightarrow Need for another batch.

5. CONCLUSIONS AND PERSPECTIVES

Test benches

Quantix test bench:

- 1. Validate test bench in the VIS and LWIR
- 2. Modify HEMT amplitifier (suspected to add noise)

Intrapix test bench:

1. First measurement with a TV format detector (this week)

Detector characterization:

ALFA detectors, next steps before delivery:

- Persistence (reproducing Titouan procedure, data acquired on one detector, to be analyzed)
- Intrapixel response (on one ALFA detector)
- QE of CH329505 (Det CAGIRE) detector to be measured

Asteroid detectors:

- Persistence measurement
- Plan to do an irradiation campaign (dose effects)

