Spectrometers based on Kinetic Inductance Detectors Usasi Chowdhury

Assemblée Générale Focus IPAG, September, 2023

Outline

Photmetric Cameras

High mapping speed and FOV Low Spectral Resolution

NIKA2 Camera, R = 3 - 5

Observation of the sky in (sub) mm wavelength

Missing: Intermediate spectral resolution with medium mapping speed !!! <u>(R = 100-1000)</u> Interferometry

High Spectral Resolution, Small FoV

NOEMA, $R = 10^5$

Typical Line Width ~0.5 GHz

Solution!!! On chip Spectrometer FTS

(Lumped Element) Kinetic Inductance Detectors: Basic Working Principles

High Quality factor, $\approx 10^5$

(Lumped Element) Kinetic Inductance Detectors: Basic Working Principles

NIKA2 Array: 260 GHz

Frequency Multiplexing

Readout all frequencies simulaneously through only one readout line

Concept of on-chip spectrometer

Selection of source

frequency

10 nm + 25 nm TiAL bilayer

Bulk Al

20 nm Al

Sapphire/Silicon

450 nm AlTiAu trilayer

Overview of OMKID

Side view

Back view Top view Overview of OMKID readout line readout line hν Horn -waveguide 4 absorber Return Loss (S11) dielectric 11.1.1.1 filter, mm wave line, LEKIDs 0.2 0.0L___ Side view 90 95 100 105 110 115 120 ν (GHz) 85

GHz 80-110 frequency source of Selection

each of the frequency

Detection of

We read out the resonances of the LEKIDs in 1-2 GHz.

At low frequency, 1-2 GHz, TiAl bilayer acts as perfect superconductor

Relevant results: *OMKID*

Martin Puplett Interferometer

mm wave Source (75-110 GHz)

Excitation Modes

Relevant results: *HYPKID*

Relevant results: *HYPKID*

Array geometry with Sky simulator

Position of the loaded *HYPKID*

Results

OMKID

HYPKID

- ✓ 16 spectral channels
- ✓ Thin Monocrystalline Dielectric, Sapphire
- $\checkmark\,$ Simple fabrication process
- ✓ NEP: Range of 10^{-16} W/ \sqrt{Hz}

- ✓ 16 spectral channels
- ✓ Thin Monocrystalline Dielectric, sapphire and silicon
- $\checkmark\,$ Direct illumination, no microstrip loss
- ✓ NEP: 10^{-17} W/ $\sqrt{\text{Hz}}$; NET: ≈ 10 mK/ $\sqrt{\text{Hz}}$

Future Perspectives

Prototypes for 3 mm

OMKID_v0

HYPKID_v0

UPCOMING prototypes for 2 mm and 1 mm

HYPKID_v1 300 spectral channels

Thank you for your attention!

Articles

OMKID

- ✓ 16 spectral channels
- ✓ Monocrystalline Dielectric, Sapphire
- ✓ Simple fabrication process
- ✓ NEP: Range of 10^{-16} W/ $\sqrt{\text{Hz}}$

HYPKID

- ✓ 16 spectral channels
- ✓ Monocrystalline Dielectric, sapphire and silicon
- ✓ Direct illumination, no microstrip loss
- ✓ NEP: 10^{-17} W/ $\sqrt{\text{Hz}}$; NET: ≈ 10 mK/ $\sqrt{\text{Hz}}$

A&A 672, A7 (2023) https://doi.org/10.1051/0004-6361/202244887 © The Authors 2023

Astronomy Astrophysics

A horn-coupled millimetre-wave on-chip spectrometer based on lumped-element kinetic inductance detectors

U. Chowdhury^{1,2}, F. Levy-Bertrand^{1,2}, M. Calvo^{1,2}, J. Goupy^{1,2,3}, and A. Monfardini^{1,2}

¹ Univ. Grenoble Alpes, CNRS, Grenoble INP, Institut Néel, 25 rue des Martyrs, 38042 Grenoble, France e-mail: monfardini@neel.cnrs.fr

Received 5 September 2022 / Accepted 5 February 2023

RAS Techniques and Instruments

RASTAI 2, 562–566 (2023) Advance Access publication 2023 August 25

https://doi.org/10.1093/rasti/rzad038

Ô

A millimetre-wave superconducting hyper-spectral device

U. Chowdhury,^{1,2} M. Calvo,^{1,2} J. Goupy,^{1,2} F. Levy-Bertrand^{1,2} and A. Monfardini ^{1,2}* ¹Institut Néel, Grenoble INP, Université Grenoble Alpes, CNRS, F-38000 Grenoble, France ²Groupement d'Intérêt Scientifique KID, F-38000 Grenoble and F-38400 Saint Martin d'Hères, France

² Groupement d'Intérêt Scientifique KID, 38042 Grenoble and 38400 Saint-Martin-d'Hères, France

³ Institut de RadioAstronomie Millimétrique (IRAM), 300 rue de la piscine, 38400 Saint-Martin-d'Hères, France