

CAGIRE

Svom

A NIR camera at the focus of the COLIBRÍ Ground Follow up Telescope

to quickly observe SVOM and multi-messengers alerts

J.L. Atteia – IRAP (Toulouse) – For the CAGIRE team

Outline

- The instrument (1)
- The sensor
- The instrument (2)
- Conclusions

SVOM & Colibrí

The SVOM mission

SVOM "Space-based multi-band astronomical Variable Objects Monitor" a Sino-French mission dedicated to GRBs and multi-messenger astronomy to be launched in 2024, duration 3+2 years

SVOM Science Goals

- HE transient Astrophysics addresses major questions
 - Stellar explosions BNS mergers and the origin of heavy elements – BH astrophysics – Origin of magnetar activity...
 - Physics of relativistic jets, their role in VHE cosmic rays production
 - The high-z universe (with GRBs): IGM, first stars...
 - Tests of Lorentz Invariance
- Diverse sources require diverse observing strategies
 - Gamma-ray bursts (of all types)
 - Mergers of compact objects
 - Active Galactic Nuclei & Relativistic Tidal Disruption Events
 - Galactic transients & Magnetars
 - Fast Radio Bursts?

07/12/2022

- The study of astronomical transients will benefit from a rich astronomical panorama in the 2020's:
 - Radio: SKA precursors & FRB detectors
 - Visible: Pan-STARRS ZTF VRO (LSST)
 - VHE γ -rays: CTA, HAWC, LHAASO
 - GWs: LIGO VIRGO KAGRA
 - Neutrinos: KM3NeT ICECUBE

This is a non-comprehensive list...

- Multi-wavelength and multi-messenger astrophysics need High Energy observatories
- → Monitoring the High-Energy sky will be more needed than ever in the coming years.
- → SVOM brings some new capabilities.

The SVOM Collaboration

• China (PI J. Wei)

- SECM Shanghai
- Beijing Normal University
- Central China University Wuhan
- Guangxi University Nanning
- IHEP Beijing
- KIAA Peking University
- Nanjing University
- NAOC Beijing
- National Astronomical Observatories
- Purple Mountain Observatory Nanjing
- Shanghai Astronomical Observatory

۲

- Tsinghua University Beijing
- Mexico UNAM Mexico

- CNES Toulouse
- APC Paris
- CEA Saclay
- CPPM Marseille
- GEPI Meudon
- IAP Paris
- IRAP Toulouse
- LAL Orsay
- LAM Marseille
- LUPM Montpellier
- OAS Strasbourg
- **UK** University of Leicester

- Germany
 - MPE Garching
 - IAAT Tübingen

- Field of view: 26' (21' for CAGIRE)

• Nasmyth 2: medium resolution spectrograph

• Primary diameter: 1.3 m

... has the following characteristics:

- Fast pointing speed: ≈20 sec
- Pointing accuracy: 2.5"
- 2 Nasmyth ports
 - Nasmyth 1: three imaging instruments
 - Filters: g /r/ i y/z J/H

... will be installed at the Mexican National Observatory in San Pedro Mártir.

VOM

CAGIRE, the NIR camera of Colibrí

- CAGIRE is developed in the context of the SVOM mission (<u>https://www.svom.eu/</u>)
- CAGIRE is funded by CNES, CNRS (IRAP), and the LabEx FOCUS. CAGIRE involves several partners:
 - Lynred & CEA-LETI
 - LabEx FOCUS
 - CEA-IRFU / CPPM / IRAP / LAM
- Responsibilities:
 - CAGIRE is built under the responsibility of IRAP.
 - Coordination between the different partners is made by CNES.
 - The detector will be characterized by CEA and CPPM before its integration in CAGIRE.
 - Coordination with Colibrí is made by the project team at LAM.
- CAGIRE will be delivered at OAN SPM in (spring) 2024.

8

Science goals of CAGIRE - 1

- Extend towards the NIR the frequency range of GFT/Colibrí:
 - To detect highly redshifted and extinct sources.
 - To expand the photometry of optical transients and of permanent sources into the NIR: Photo-z, Dust properties, etc. •
- The early afterglow (<1000 s) of GRBs is poorly observed in the NIR.
- Soon after the GRB, NIR afterglows can be very bright...

9

Science goals of CAGIRE - 2

- Extend towards the NIR the frequency range of GFT/Colibrí:
 - To detect highly redshifted and extinct sources.
 - To expand the photometry of optical transients and of permanent sources into the NIR: Photo-z, Dust properties, etc.
- The early afterglow (<1000 s) of GRBs is poorly observed in the NIR.
- Soon after the GRB, NIR afterglows can be very bright...

(Credit: P. Schady)

The instrument - 1

Three subsystems...

- CAGIRE encompasses three sub-systems:
 - Cryostat
 - On-board (close) electronics
 - Remote (main) electronics
- Some consequences:
 - Rotating instrument and controller.
 - Cryogenic vacuum.
 - Cable paths from the control room to the instrument.

Optical design

• The optical design has been made by UNAM.

CAGIRE

A NIR camera on a fully robotic telescope

Design trade-offs

- Outside the cryostat, warm optics:
 - VIS vs NIR separation at 1.1 $\mu m.$
 - Focus done by moving L7.
 - Warm shutter
 - J & H filters: [1.17 1.33] & [1.49 1.78] µm
- Inside the cryostat:
 - Cold pupil.
 - Blocking filter for wavelengths >1.78 μ m.
 - 1 ALFA detector from the Lynred company.
 - No cryogenic mechanism in normal operation.
 - Can use a moveable cold shutter to put the detector in darkness, during engineering periods.

- The sensor is readout with the New General Controller from ESO.
- All observations made in Up The Ramp mode (UTR).
- No dithering at instrument level.
- No correction for atmospheric dispersion.
- Fast inline data analysis.

The cryostat

- The cryostat maintains the detector cold, under vacuum.
- Few optical components inside the cryostat:
 - A cold pupil and an optical baffle.
 - A cold filter blocking wavelengths longer than 1.8 μ m.
 - A field lens, just in front of the detector.
- In normal operations there is a single mechanism: the warm J/H filter slide.
- A motorized cold shutter permits to put the detector in darkness for calibration purposes. It will be used during special engineering sessions.
- The construction of the cryostat has been awarded to the SDMS company.

Electronics

- The electronics controls:
 - The detector: preamplifier, NGC
 - The cryostat: temperature regulation, pressure control
 - The cryocooler
 - The filters (J/H)
 - The cold shutter (open/close)
 - The close cabinet environment (T, humidity)
 - The power distribution

Mechanics

- It provides the mean to align the optical axis of the camera with the optical axis of the telescope, with 5 degrees of freedom.
- The mechanics ensures the rigidity of the camera during the movements of the telescope.
- Being on the derotator, the cryostat and the close electronics have strict weight and CoG constraints.

07/12/2022

Operations & software

- CAGIRE is essentially a passive instrument, executing ramp observations upon request, and sending back NIR images for the Astronomy pipeline, in typically less than 60 s.
- The instrument configuration parameters are minimal:
 - Filter: J or H
 - Ramp duration
- The detector is permanently under reset waiting a msg from the Telescope Control System (TCS) to start a ramp.
 - When the ramp is finished, it is automatically processed within seconds.
 - As soon as it is available, the flux map is made available to the Astronomy pipeline.
 - Ramps can be interrupted at any time by the TCS.

==> Alix presentation

The sensor

ALFA CH 329505

The Sensor

- ALFA (Astronomy Large Focal plane Array) is a 2k x 2k NIR detector jointly developed by CEA-LETI and the Lynred company.
- CEA-IRFU has performed the detailed characterization of various ALFA detectors: dark current, CDS noise, dynamic range, linearity, cosmetics, quantum efficiency, persistence, etc.
- These tests have shown that the performance of CH 329505 is perfectly adapted to CAGIRE needs. ESA has accepted to lend it to CAGIRE, and the FOCUS <-> ESA contract has been signed very recently.

Great Thanks!

CDS Noise temporal : test_dark_100K_pixel_reset_tint_360.fits corrected 2000 1750 1500 1250 1000 750 500 250 0

250

500

750

1000

1250

1500

1750

Median deviation from linearity 2.3% (at 80 ke-)

A sensor for CAGIRE

- The design of CAGIRE explains why some characteristics are more important than others:
 - CAGIRE observes a large field of view...
 - With 'only' 4 10⁶ pixels. It has large sky pixels, 0.65" on a side, resulting in a high sky background ≈100-1000 e-/s/pix in the J & H channels respectively. The dark current is completely negligible, and the readout noise is sub-dominant except for very short exposures.
 - The field of view will always contain 10's to 100's **saturating stars** (J,H ≤11). It is thus important to have a large dynamic range in flux and little persistence.
 - We don't know the GRB position in the field of view, hence we cannot favour a 'better' part of the detector. It is important to have a spatially uniform detector.

A crude (personal) summary after IRFU characterization

 More important characteristics: 	CH 329505
 Dynamic range & linearity 	++
 Spatial homogeneity 	++
 Quantum efficiency 	=
Persistence	+
 Cross-talk 	+
 Cosmetics 	++

- Less important characteristics:
 - Dark current
 - Noise

+

Sensor characterization strategy

The characterization of the ALFA sensor for CAGIRE goes through 3 steps:

@IRFU, full characterization under ESA contract, including RQE →Done, for CH 329505

@CPPM, CAGIRE oriented characterization: settings and operations identical to CAGIRE. These characterizations will permit measuring several parameters relevant for CAGIRE observations: saturation level, non-linearity, response to light, dark signal, cosmetic, etc. for all the pixels.

→ Starting soon

@IRAP, characterization of the whole CAGIRE instrument: with realistic electrical and thermal environment (and simulated point sources)

→ Fall 2023

The instrument - 2

Instrument status (Dec. 2022)

- PDR passed in June 2020. CDR passed in June 2021.
- The I/Fs with Colibrí are fully defined: optical mechanical electrical software.
- Two warm electronic chains (ROIC + preAmp + NGC) are available at IRAP and CPPM. They are used to
 prepare all the AIT/AIV activities before we get the real sensor.
- The contract for the cryostat has been awarded to the SDMS company. The cryostat will be delivered to IRAP before June 2023.
- The contract between ESA and UGA (FOCUS) has been signed recently, allowing CH 329505 to go to CPPM.
- We expect the sensor to be delivered to CPPM before the end of the year and the characterizations at CPPM to start in January 2023.
- We are currently revising the AIT plan @IRAP to shorten (reasonably) the duration of the tests of the instrument.
- We expect to have CAGIRE installed @OAN SPM by mid-2024. A mass model of CAGIRE will be sent to Mexico, along with the telescope, to allow using the visible channels before the delivery of CAGIRE.

Sensitivity

- CAGIRE provides 0.65" pixels on the sky, giving an expected sky signal of 150 and 1250 e-/s/pix in J & H respectively (4.6 and 37.5 ke- in a 30 s exposure). Except for very short exposures, the sensitivity will be limited by the fluctuations of the sky signal. The sensitivity of CAGIRE is thus sky-limited.
- The sensitivity of CAGIRE has been computed in the document "Colibrí expected performance" (GFT-AN-A3135-046-UNAM): for an exposure of 240 s (8 exposures of 30 s), the limiting magnitudes are $J_{AB} = 19.7$ and $H_{AB} = 18.8$, complying with the science requirements.

Simulation of the detector

- Alix and David Corre are doing a significant amount of work to simulate realistic sky images with CAGIRE, that include the sky and telescope and detector effects.
- This is a very useful tool, to test the observing strategy, the preprocessing, and the impact of detector performance on the instrument sensitivity.
- Contribution to the construction of an Exposure Time Calculator and Image Simulator for Colibrí.
- Will permit to include CAGIRE in the complete simulation chain of SVOM.

Conclusions

- Studying the first minutes of GRB emission and multi-messenger transients at NIR wavelengths remains a crucial objective in the coming years.
- After a successful critical definition review, CAGIRE is now in the realization phase.
- CAGIRE relies on the close collaboration of several partners:
 - FOCUS has attributed one ALFA detector → Many Thanks!
 - ESA has accepted to loan the best sensor to FOCUS for CAGIRE \rightarrow Many Thanks!
 - CEA-IRFU and CPPM are key partners, they experience is crucial to get the best from the sensor.
- The instrument teams are working hard to get CAGIRE looking at the NIR sky in the summer of 2024.

CAGIRE science requirements

Criterion	Parameter	Value	Comment
SO2ª	Spectral range	Must cover J & H photometric channels ([1.1 – 1.8] μm)	
S07	Detector readout mode	Up The Ramp	Science mode @ 100 kHz
S08	Time to start a new observation	≤ 5 s	
S09	Time resolution	≤ 2 s	
S10	Timing accuracy	100 ms	
A01	Number of outputs	32	
A02	Readout time	1.33 s	
A03	Linear well CHC	≥ 80 ke-	Linearity better than 5% at 80 ke-
A04	CDS Noise	≤ 55 e- rms	Decrease of mag. limit ≤ 0.15 wrt 20 e- rms
A05	QE @ 100K	≥ 0.7	Measured at 1.3 & 1.7 μm Cf. doc "GFT expected performance"
A06	Dark current	≤ 1 e-/pix/s	Not critical, considering the sky background
A07	Pixel operability	≥ 95% (TBC)	A pixel is operable if the following parameters are in their acceptable range: CDS Noise – Dark current – Linear well – QE – Persistence – Light response
A08	Cross-talk (total)	≤ 5%	Measured at 50% of full well
A09	Persistence	≤ 25 e-/s/pix (TBC)	Measured during 60 s after a 60 s saturated exposure. Cf. doc about persistence

07/12/2022