

leti ceatech

STUDY AND CHARACTERIZATION OF PERSISTENCE ON HGCDTE INFRARED DETECTORS FOR ASTRONOMY APPLICATION

T. LE GOFF¹, O. GRAVRAND¹, N. BAIER¹, T. PICHON², O. BOULADE²

(1) CEA LETI – 17 Avenue des Martyrs, 38000 Grenoble (France)
(2) CEA IRFU – Orme des Merisiers, 91191 Gif-Sur-Yvette (France)

Email : titouan.legoff@cea.fr

Workshop "What future for European large format IR detectors ?"| LE GOFF Titouan| 07/12/2022

OUTLOOK

- Introduction
- Instrumentation & protocoles
 - Cryostat with cold integration sphère and IR LED
 - Protocoles definition (optical, electrical, flash, ramp)
- Analysis
 - Influence of test parameters
 - Comparison of optical flash & electrical stress
 - Comparison of optical ramp & flash illumination
- Persistence : a tool to probe technology quality
 - Additionnal information obtained with persistence
 - Persistence study on detectors with technological flavors
- Conclusion

INTRODUCTION

Time (s)

VGA Test Detectors S In house HgCdTe SWIR (2.1 and 2.5µm) HgCdTe absorbing 15µm pitch, P/N diodes layer Preliminary batches from ALFA Ν Collection SCR Low flux detectors for astronomy of charges P Flux ~1ph/s Voltage In SFD ROIC Readout Detector arra Non destructive readout Si ROI High conversion gain But non linear (no additionnal capacitance) (•/•/• HgCdTe ·/·/·/·/· V_{PV} LΤ LT. Vout Integration ramp on a SFD pixel under constant flux 11 Shift Data registers 500 Fit constant C = 17fF Vfloat 11 400 Voltage (mV) 000 000 Output (x8) 11 Vreset (Per pixel) 100 20 40 60 80 100 120 140 0 Workshop "What future for European large format IR detectors ?"| LE GOFF Titouan| 07/12/2022 | 3

DESCRIPTION OF PERSISTENCE AND ITS PROBLEMATIC

Persistence

Calibration ? Influence of stress amplitude, duration, operating temperature ... → Time consuming

leti

ceatech

F CUS

Persistence comparison between detectors ?

Needs of a reproducible protocole and controled environment

25000

INSTRUMENTATION – CRYOSTAT WITH COOLED IR LED

Cryostat

Liquid nitrogen + regulation T° from 90 to 150K Shielding : measured obscurity < 0,003 *ph/s* Integrating sphere : FOCUS

IR LED

LED (@1,55µm) flux : $4 \ 10^6 \ ph/s$ to 4 ph/s → Pulsed operation : repetition of 1µs flash → 4 ph/pulse

PROTOCOLES DEFINITION

Protocoles inspired from the litterature Measurement type:

- Reproducible reference
- LED flash
- Illumination ramp
- Electrical stress

Test parameter

- Stress amplitude :nbr of photons or ΔV
- Soak time

Persistence parameters

- Amplitude
- Time constant
- Current decay

PERSISTENCE ANALYSIS

Multi-exponential fitting:

- Cumulative persistence
- Free parameters : V_i and τ_i

$$V(t) = V_1 \left(1 - e^{-\frac{t}{\tau_1}} \right) + V_2 \left(1 - e^{-\frac{t}{\tau_2}} \right) + V_3 \left(1 - e^{-\frac{t}{\tau_3}} \right) + \frac{I_{dark}}{C} t$$

- Or fixed au

$$V(t) = \frac{I_{dark}}{C}t + \sum_{i=0}^{n=6} V_i \left(1 - e^{-\frac{t}{10^i}}\right)$$

Power law fitting:

- Faster than multi-exponential fitting
- Less robust (*I*_{dark} must be well estimated)

 $V(t) = V_0 t^{\gamma}$

Semi-analytic model[2]:

- Based on emission of traps in the SCR

Workshop "What future for European large format IR detectors ?"| LE GOFF Titouan| 07/12/2022 | 7

LED flash (4 $10^6 ph/s$) and illumination ramp (10ph/s)

Difference between stress flash & ramp : Amplitude is lower and time constant is shorter with the ramp illumination Persistence takes time to charge → Measured flux appears lower thant the true flux

leti

Ceatech

CUS

LED flash and illumination ramp, effect of saturation regime

Stress up to 10x full well Ramp persistence amplitude > flash → Time spent at saturation is crutial LED flash cannot calibrate this regime

Flash LED and electrical stress

Persistence amplitude with soak time : power law Persistence with stress amplitude : linear relation up to FW

Persistence function of soak time

Soak time

Optical flash

LED ON (~ms) LED OFF (min)

LED OFF (~h)

10³

Post reset mesurement.

dark conditions

LED OFF (~h)

MAIN RESULTS

1000

Flash LED and electrical stress

Comparison with electrical stress

Similar results

→ Equivalence of both protocoles

But can differ on some detectors [3]. Epoxy void contribution ?

Electrical

leti

INFLUENCE OF A DETECTOR TECHNOLOGY ON PERSISTENCE

Manufacturing interest:

Persistence patterns on a detector differs from dark current

 \rightarrow Additionnal information thanks to persistence

leti

Ceatech

F CUS

INFLUENCE OF A DETECTOR TECHNOLOGY ON PERSISTENCE

Detector with technology flavors

Mechanisms involved in persistence?

leti

Ceatech

F CUS

INFLUENCE OF A DETECTOR TECHNOLOGY ON PERSISTENCE

leti

ceatech

| 15

CONCLUSION

Protocoles comparison

LED flash ⇔ electrical stress Needs to calibrate soak time Importance of time spent at saturation Analysis tools Multi-exponential or power law Semi-analytic model Considering charge phase of persistence?

Perspectives FCUS

Persistence mitigation PhD work ongoing : Hugo ROUSSET (2021-2024)

Thank you !

												-							-			-											
							_											-															
																								-								_	
÷.														- 7																			
	2	2	2	2			2	5										-		1												i.	
	з.	2	а.	з.	_	_	2	2	_																								
	а.		а.					а.	а.																								
	Ξ.		Ξ.					Ξ.																									
	_	5	Ξ.			Ξ.	-	-	н.																								
	н.							1																									
														а.									с.			С.			х.				
				2																								_					

Leti, technology research institute Commissariat à l'énergie atomique et aux énergies alternatives Minatec Campus | 17 avenue des Martyrs | 38054 Grenoble Cedex | France www.leti-cea.com

ANNEXE

Usual explanation [4] Electrical stress : all traps are filled Trapping/emission processes from diode SCR with moving edges

Trap emission dynamics:

$$e_n(E_T) = \sigma_n v_{th} N_c \exp\left[-\frac{E_c - E_{T0}}{kT}\right]$$

And
$$\frac{dn}{dt} = e_n n_T(t)$$
 et $\frac{dn_T}{dt} = -e_n n_T(t)$

Rampe de persistance d'un pixel Fit avec modèle multi-exponentiel 25 20 Tension (mV) 12 + Data – Single exponential: $\tau_1 = 290s$ Double exponential: 5 $\tau_1 = 45s, \tau_2 = 1750s$ Triple exponential: $\tau_1 = 8s, \tau_2 = 160s, \tau_3 = 2100s$ 0 2000 4000 6000 8000 10000 12000 14000 Temps(s)

Leti Ceatech

| 18

New hypothesis :

Defects with broad energy level distribution

[7]
$$n_T(t) = n_T(0) \int_0^\infty g(E_{Ti}) \exp[-e_n(E_{Ti})t] dE_{Ti}$$

 $g(E_{Ti}) = \frac{1}{\sigma_T \sqrt{2\pi}} \exp\left[-\frac{(E_{T0} - E_{Ti})^2}{2\sigma_T^2}\right]$

Defects in MCT [6]:

[7] W. Schröter, J. Kronewitz, U. Gnauert, F. Riedel and M. Seibt, Phys. Rev. B, vol 52 (1995)
[8] P. Omling, L. Samuelson, and H. G. Grimmeiss, Journal of Applied Physics 54, 5117 (1983)
Workshop "What future for European large format IR detectors ?" | LE GOFF Titouan | 07/12/2022

Persistence in a SFD pixel: Current transient ^[8] Non linear capacitance change

Capacitance:

$$C = \frac{A\epsilon}{W(t)}; W(t) = \sqrt{\frac{2\epsilon_{MCT}}{q[N_D - n_T(t)]}} \left[V_{bi} - \left(V_{stress} + V_{float}(t) \right) \right]$$

Current:

$$I = qA \left[W(t) - W_0 - \frac{W(t)^2 - W_0^2}{2W(t)} \right] \int_0^\infty g(E_T) e_n(E_T) n_T(0) \exp[-e_n(E_T)t] dE_T$$

Beometry
Electron
emission
Displacement
current
Displacement
broadening

Results

Reproduces the non linear dynamics Persistence amplitude only depends on n_T ASTEROID : n_T = residual doping

Limits

Persistence on 1st generation detectors: Trap density \cong doping

Compensated material ? Out of the scope of the model

Persistence ramp of one pixel from detector first generation technology

Workshop "What future for European large format IR detectors" | LE GOFF Titouan | 07/12/2022 | 20